Selection and Validation of Reference Genes for Real-Time Quantitative PCR in Hyperaccumulating Ecotype of Sedum alfredii under Different Heavy Metals Stresses
نویسندگان
چکیده
Real-time Quantitative PCR (RT-qPCR) has become an effective method for accurate analysis of gene expression in several biological systems as well as under different experimental conditions. Although with high sensitivity, specificity and broad dynamic range, this method requires suitable reference genes for transcript normalization in order to guarantee reproducible and meaningful results. In the present study, we evaluated five traditional housekeeping genes and five novel reference genes in Hyperaccumulating ecotype of Sedum alfredii, a well known hyperaccumulator for heavy metals phytoremediation, under Cd, Pb, Zn and Cu stresses of seven different durations. The expression stability of these ten candidates were determined with three programs--geNorm, NormFinder and BestKeeper. The results showed that all the selected reference genes except for SAND could be used for RT-qPCR normalization. Among them UBC9 and TUB were ranked as the most stable candidates across all samples by three programs together. For the least stable reference genes, however, BestKeeper produced different results compared with geNorm and NormFinder. Meanwhile, the expression profiles of PCS under Cd, Pb, Zn and Cu stresses were assessed using UBC9 and TUB respectively, and similar trends were obtained from the results of the two groups. The distinct expression patterns of PCS indicated that various strategies could be taken by plants in adaption to different heavy metals stresses. This study will provide appropriate reference genes for further gene expression quantification using RT-qPCR in Hyperaccumulator S. alfredii.
منابع مشابه
Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance
The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-t...
متن کاملIntegration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation
The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we co...
متن کاملA Genetic Transformation Method for Cadmium Hyperaccumulator Sedum plumbizincicola and Non-hyperaccumulating Ecotype of Sedum alfredii
The present study demonstrates the development of an Agrobacterium-mediated genetic transformation method for species of the Sedum genus, which includes the Cd/Zn hyperaccumulator Sedum plumbizincicola and the non-hyperaccumulating ecotype of S. alfredii. Multiple shoots were induced from stem nodes of two Sedum plants using Murashige and Skoog (MS) medium containing 0.1 mg/L cytokinin 6-benzyl...
متن کاملFunctional Characterization of a Gene in Sedum alfredii Hance Resembling Rubber Elongation Factor Endowed with Functions Associated with Cadmium Tolerance
Cadmium is a major toxic heavy-metal pollutant considering their bioaccumulation potential and persistence in the environment. The hyperaccumulating ecotype of Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator inhabiting in a region of China with soils rich in Pb/Zn. Investigations into the underlying molecular regulatory mechanisms of Cd tolerance are of substantial interest. Here, library s...
متن کاملTranscriptome Comparison Reveals the Adaptive Evolution of Two Contrasting Ecotypes of Zn/Cd Hyperaccumulator Sedum alfredii Hance
Hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance belong to the same species but exhibit contrasting characteristics regarding hyperaccumulation and hypertolerance to cadmium and zinc. The Illumina Hiseq 2500 platform was employed to sequence HE and NHE to study the genetic evolution of this contrasting trait. Greater than 90 million clean reads were...
متن کامل